

Implementation of the MSCR Test and Specification: Questions, Clarifications, and Emphasis

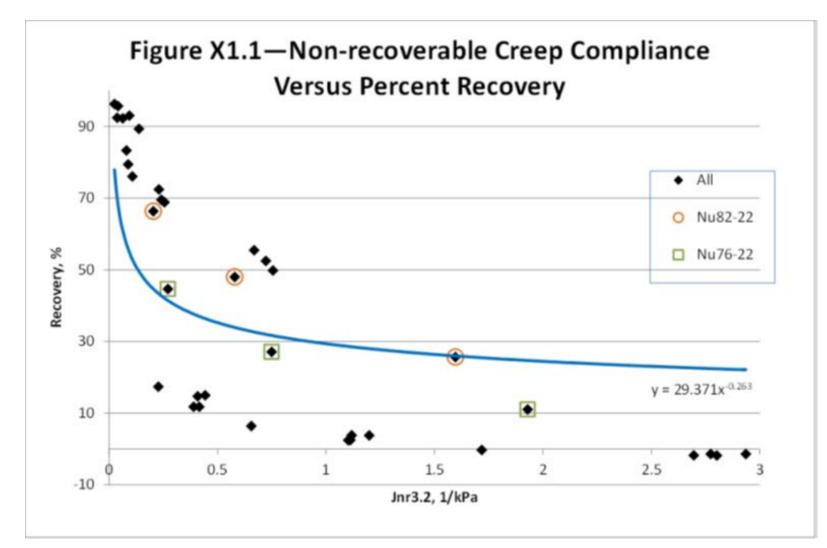
Mike Anderson, Asphalt Institute

Asphalt Binder ETG Meeting September 15-16, 2015

Oklahoma City, OK

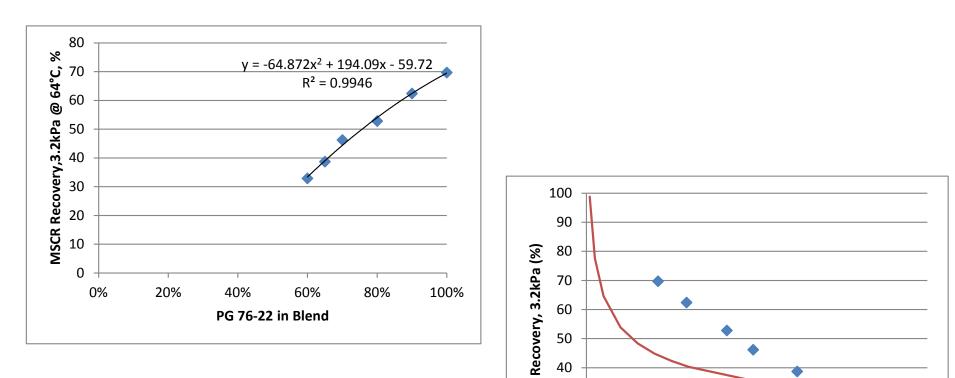
- Acknowledgments
 - Federal Highway Administration
 - DTFH61-11-H-00033, "Deployment of Innovative Asphalt Binder and Construction Technologies"
 - Michael Arasteh, AOTR
 - John Bukowski, Tom Harman, Matt Corrigan, Jeff Withee, Tim Aschenbrener, Jason Dietz
 - Member Companies of the Asphalt Institute
 - Technical Advisory Committee

- MSCR Test
 - AASHTO T350
- Performance-Graded (PG) Specification using MSCR
 - AASHTO M332
- Practice for Evaluating the Elastic Behavior of Asphalt Binders Using the MSCR Test
 - Draft practice not yet sent to AASHTO for review


- Concerns/Questions/Challenges
 - Inconsistent implementation by specifying agencies
 - Grade names in AASHTO M332
 - Variability of MSCR test
 - Selection of appropriate test temperature
 - Leadership/champion
 - Use of recovery-Jnr curve for evaluating elastic response

- Concerns/Questions/Challenges
 - Use and relevance of Jnr-Diff as a specification requirement
 - Use and criterion for intermediate temperature binder parameter (G*sin δ)
 - Criterion for unmodified asphalt binders ("S" grades)
 - Original DSR criterion
 - Quick QC testing on original binder

- ASTM Standard
 - Standard Specification for Performance Graded Asphalt Binder Using the Multiple Stress Creep and Recovery Test
 - Bob Kluttz (Kraton), Chair
- Negative Votes (Summary of Key Points)
 - There's some confusion on the language that a few folks are interpreting to mean binders must be modified. Action reword Section 5.7.
 - There's still fear of grade proliferation. Is there any solid data from any of the implementing states or UPGs to naysay this?


- Negative Votes (Summary of Key Points)
 - AASHTO T350 and ASTM D7405 are different (now fixed)
 - There's still unhappiness with 5000 kPa for S and 6000 for all other grades.
 - And the one that drew the most flack—The R3.2 vs. Jnr3.2 curve for selecting R3.2 criteria. The implication from the language in the spec is that the figure is a yes/no determination on whether or not a binder is modified. Action needs clarification (currently using M332 language).

• Negative Votes (Summary of Key Points)

- Use of recovery-Jnr curve for evaluating elastic response
 - Some agencies are using the curve as-is
 - Some agencies are specifying a minimum Rec-3.2 value
 - Kentucky has a requirement of Rec-3.2 ≥ 60% for their PG 76-22 asphalt binders (M320) when tested at 64°C
 - Replaces ER
 - Rec-3.2 is determining factor
 - Is curve even needed?
 - Replacement for PG Plus Tests
 - Maximum phase angle

Use of recovery-Jnr curve for evaluating elastic response

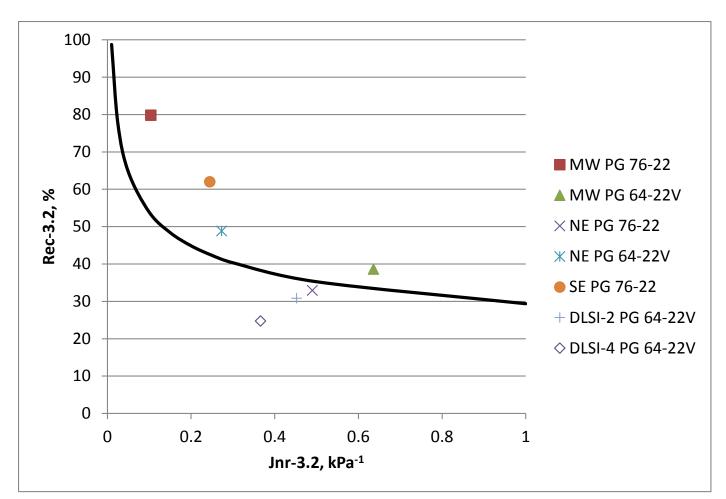
30

20

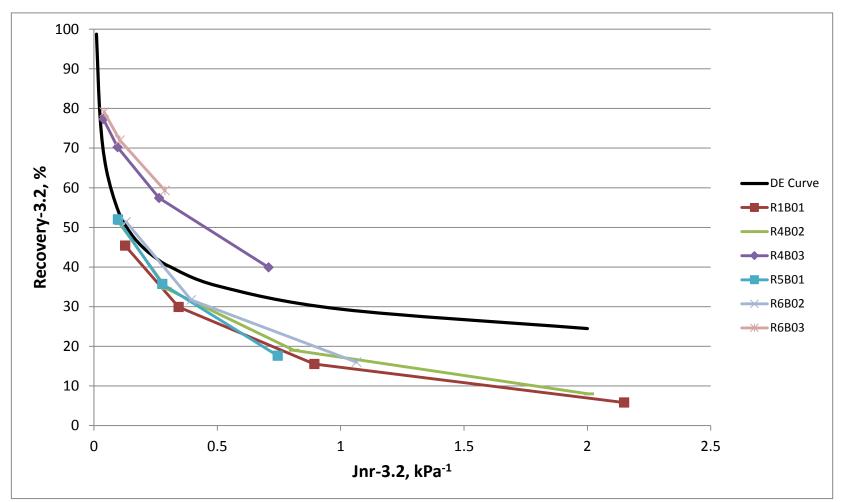
0

0.2

0.4


0.8

1


0.6

Jnr,3.2kPa (1/kPa)

Use of recovery-Jnr curve for evaluating elastic response

• Use of recovery-Jnr curve for evaluating elastic response

- Selection of appropriate test temperature
 - "Standard" environmental temperature
 - Selection of environmental temperature based on LTPPBind 3.1
 - Guidance on the appropriate assumptions needed
 - Similar to AMPT Flow Number
 - Locations that choose "standard" temperature that is different than environmental temperature
 - e.g., choosing 64°C when LTPPBind would suggest that the climate is 58°C
 - Southeastern states that use 67°C as standard temperature

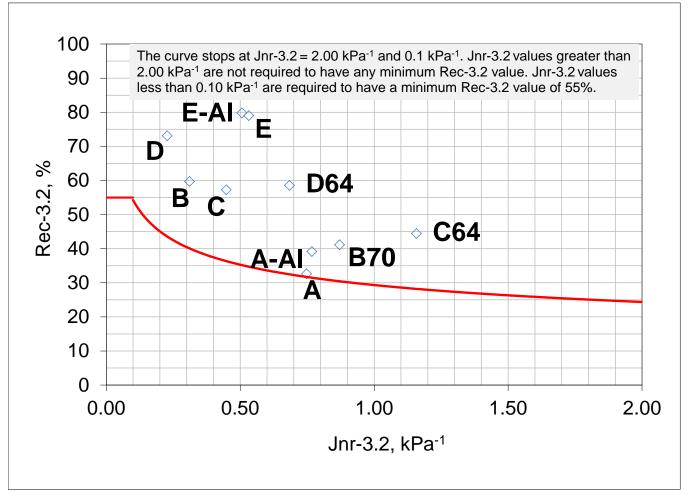
- Selection of appropriate test temperature
 - Standard environmental temperature with grade bumping (higher traffic)
 - Standard environmental temperature with grade dumping (RAP and RAS use)
 - Use of a softer grade due to RAP and/or RAS use
 - What temperature for testing?
 - i.e., PG 58-28 is used in a RAP-RAS mix in a 64°C climate
 - Test the PG 58-28 at environmental temperature (64°C)? If so what grade would this be ("R"?) Or test as PG 58S-28 (at 58°C)?

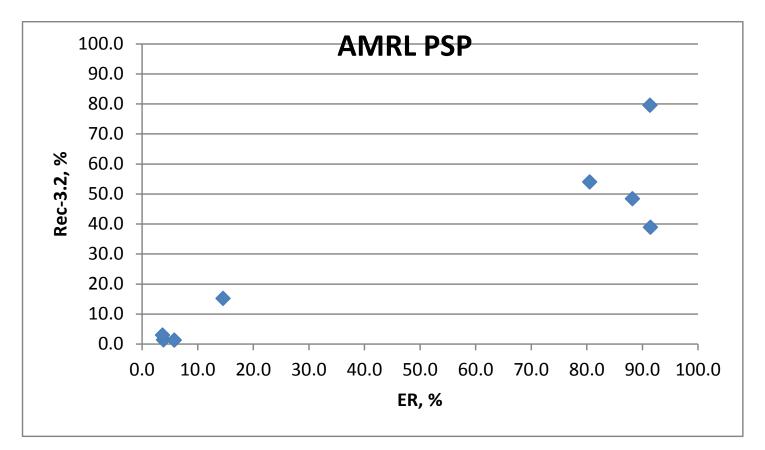
- Original DSR Criterion
 - Testing at environmental temperature with no change in criterion
 - H, V, and E grades will easily meet criterion at environmental grade
 - $G^*/sin \delta \ge 1.00 kPa$

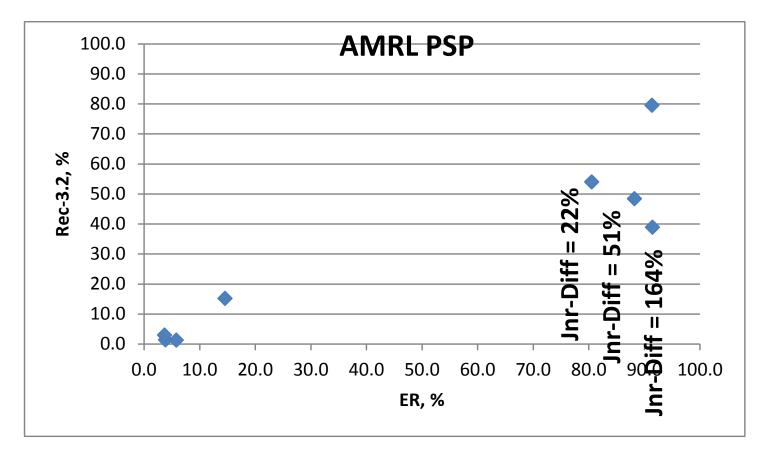
- Criterion for unmodified asphalt binders ("S" grades)
 - Original criterion was J_{nr} at 3.2 kPa shear stress (Jnr-3.2) ≤ 4.0 kPa⁻¹
 - Changed to ≤ 4.5 kPa⁻¹ based on recommendation from Asphalt Binder ETG
 - Asphalt Institute report dated 26 April 2013
 - Presentation at Asphalt Binder ETG Meeting in May 2013 (Raleigh, NC)
 - Concern that change still allows some currently acceptable unmodified asphalt binders (M320) to fail M332.

Criterion for unmodified asphalt binders ("S" grades)

Table 15: Calculated Values of Jnr-3.2 at AASHTO T315 T_c and G*/sin δ at AASHTO TP70 T_c


	Figure 1	Figure 2	Figure 4	Figure 31
	(Source A, PG	(AI	(SHRP MRL)	(SHRP MRL,
	64-22)	Miscellaneous)		Multiple Labs)
Jnr-3.2 at AASHTO	4.70 kPa ⁻¹	4.65 kPa ⁻¹	4.52 kPa ⁻¹	4.65 kPa ⁻¹
T315 T _c (where G*/sin				
$\delta = 2.20 \text{ kPa}$)				
G*/sin δ at AASHTO	2.53 kPa	2.52 kPa	2.46 kPa	2.52 kPa
TP70 T _c (where Jnr-3.2				
$= 4.00 \text{ kPa}^{-1}$)				


G*/sin δ at T350 T_c (where Jnr-3.2 = 2.285 kPa 2.267 kPa 2.209 kPa 2.267 kPa 4.50 kPa⁻¹) **2.257 kPa**



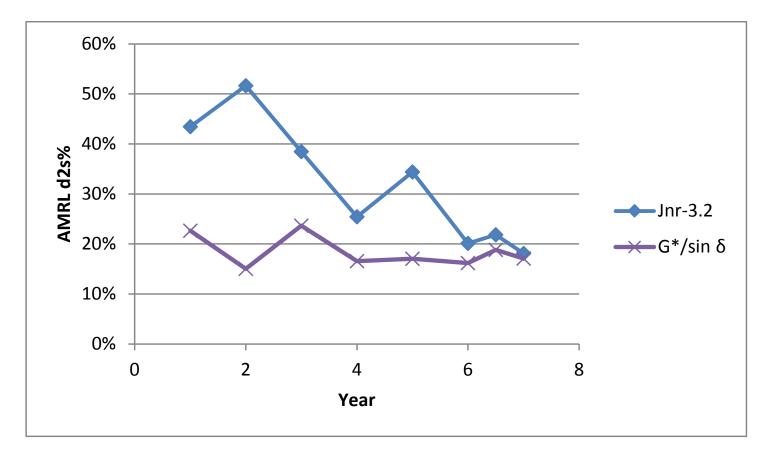
- Use and relevance of Jnr-Diff as a specification requirement
 - Indicative of stress-sensitive binders
 - Problem for some current formulations
 - Not a problem for the majority of modified binders
 - Is it needed?

ID	Grade	Temp. (°C)	Jnr-3.2 (kPa⁻¹)	Rec-3.2 (%)	Jnr-Diff (%)
А	PG 76-28	64	0.748	32.6	1157
В	PG 70-22ER	64	0.311	59.7	20
С	PG 64-28NV	58	0.448	57.2	42
D	PG 64-28PM	58	0.227	73.1	14
Е	PG 58-34PM	58	0.532	79.0	38

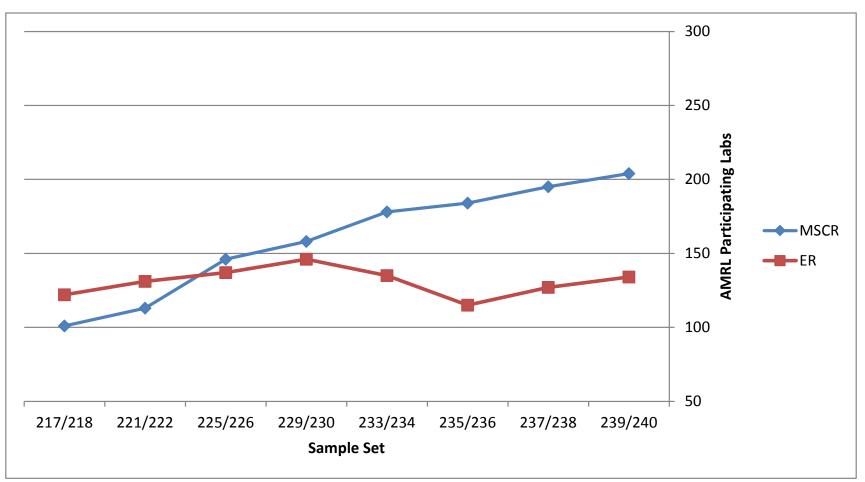
- Variability of MSCR test
 - Continued expressed concerns about variability in Jnr and Rec
 - WCTG Data Set
 - Higher test temperature
 - Higher applied shear stress

- Variability of MSCR test
 - WCTG Data Set

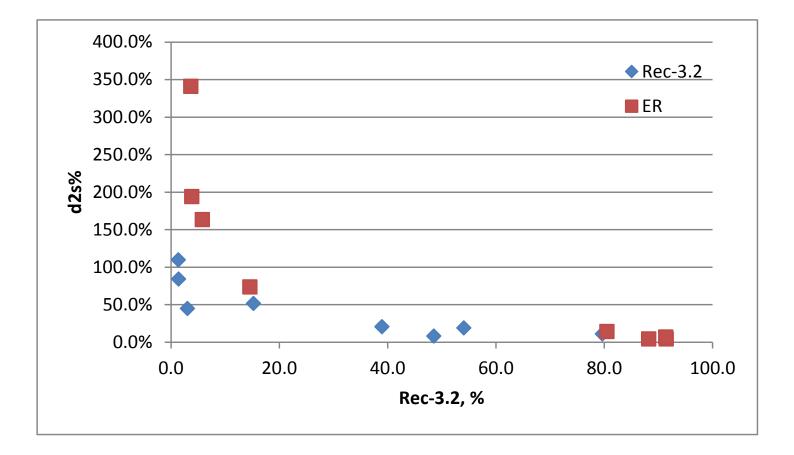
COV Comparison of Superpave PG Plus Tests, 2010-2011 samples					
Test	Maximum	Minimum	Average	Median	
Ductility, Unaged	21.8%	6.3%	11.8%	10.8%	
Ductility, RTFO	17.4%	8.2%	13.9%	13.9%	
Toughness, Unaged	23.6%	4.6%	14.9%	14.9%	
Tenacity, Unaged	49.0%	8.9%	21.9%	17.9%	
Jnr, 3.2 kPa @ PG Temp.	57.0%	5.2%	27.5%	29.1%	
Jnr, 3.2 kPa @ PG - 6 °C Temp.	51.1%	6.9%	24.3%	23.9%	
Jnr, 10 kPa @ PG Temp.	878.4%	52.0%	137.1%	78.7%	
Jnr, 10 kPa @ PG - 6 °C Temp.	237.3%	54.0%	92.8%	77.6%	
% Rec, 3.2 kPa @ PG Temp.	58.4%	2.7%	13.8%	6.7%	
% Rec, 3.2 kPa @ PG - 6 °C Temp.	18.8%	0.8%	7.2%	3.9%	
% Rec, 10 kPa @ PG Temp.	86.5%	12.1%	39.1%	35.1%	
% Rec, 10 kPa @ PG - 6 °C Temp.	55.4%	5.6%	22.1%	20.6%	
% Elastic Recovery, 25 °C	5.9%	1.0%	2.5%	2.0%	
Maximum	878.4%	54.0%	137.1%	78.7%	
Minimum	5.9%	0.8%	2.5%	2.0%	


- Variability of MSCR test
 - WCTG Data Set

COV Comparison of Superpave PG Plus Tests, 2010-2011 samples					
Test	Maximum	Minimum	Average	Median	
Ductility, Unaged	21.8%	6.3%	11.8%	10.8%	
Ductility, RTFO	17.4%	8.2%	13.9%	13.9%	
Toughness, Unaged	23.6%	4.6%	14.9%	14.9%	
Tenacity, Unaged	49.0%	8.9%	21.9%	17.9%	
Jnr, 3.2 kPa @ PG Temp.	57.0%	5.2%	27.5%	29.1%	
Jnr, 3.2 kPa @ PG - 6 °C Temp.	51.1%	6.9%	24.3%	23.9%	
Jnr, 10 kPa @ PG Temp.	878.4%	52.0%	137.1%	78.7%	
Jnr, 10 kPa @ PG - 6 °C Temp.	237.3%	54.0%	92.8%	77.6%	
% Rec, 3.2 kPa @ PG Temp.	58.4%	2.7%	13.8%	6.7%	
% Rec, 3.2 kPa @ PG - 6 °C Temp.	18.8%	0.8%	7.2%	3.9%	
% Rec, 10 kPa @ PG Temp.	86.5%	12.1%	39.1%	35.1%	
% Rec, 10 kPa @ PG - 6 °C Temp.	55.4%	5.6%	22.1%	20.6%	
% Elastic Recovery, 25 °C	5.9%	1.0%	2.5%	2.0%	
Maximum	878.4%	54.0%	137.1%	78.7%	
Minimum	5.9%	0.8%	2.5%	2.0%	


- Variability of MSCR test
 - AI-Coordinated ILS
 - d2s% shown for between lab (reproducibility)

ILS	Multi-Lab Rec-3.2	Multi-Lab Jnr-3.2
ETG 2009	18.1%	22.0-42.6%
NEAUPG 2010	18.7%	33.7%
SEAUPG 2011	9.8%	28.0%
NEAUPG 2012	7.6%	33.0%
PCCAS 2013	13.8%	36.8%


- Variability of MSCR test
 - AMRL PSP

- Variability of MSCR test
 - AMRL PSP

- Variability of MSCR test
 - AMRL PSP

Variability of MSCR test

• PCCAS ILS (2013)

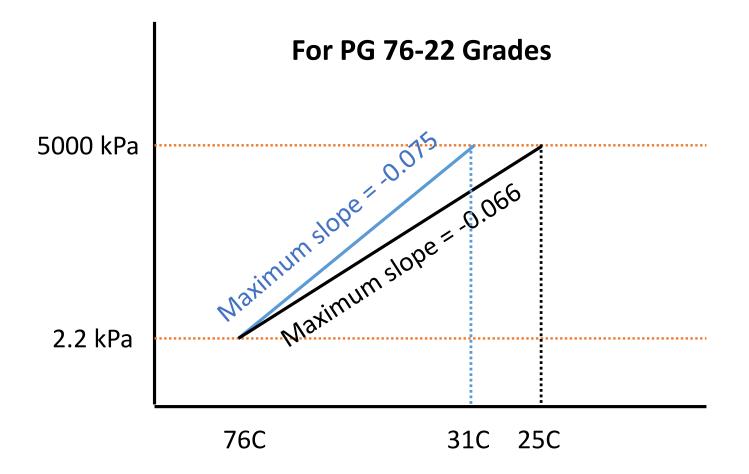

	Acceptable Range of Two Test Results (d2s%) 2013 PCCAS ILS		
Test	Single Operator Precision	Multilaboratory Precision	
Elastic Recovery (RTFO) at 25°C	5.6%	9.2%	
R&B Softening Point	2.8%	7.7%	
Ductility (Original) at 4°C	17.9%	75.0%	
Ductility (RTFO) at 4°C	19.5%	95.1%	
Toughness at 25°C	15.3%	29.1%	
Tenacity at 25°C	17.9%	30.0%	

Table 20: Estimated Repeatability and Reproducibility from ILS

MSCR Rec-3.2	8.0%	17.3%
--------------	------	-------

- Use and criterion for intermediate temperature binder parameter (G*sin δ)
 - Not specifically concern with MSCR
 - Use of $G^*sin \delta$ as intermediate parameter
 - Change to environmental temperature makes matters worse
 - PG 76-22 would be tested at 31°C and G*sin δ would have to be ≤ 5000 kPa
 - PG 64V-22 would be tested at 25°C and G*sin δ would have to be ≤ 6000 kPa
 - Shouldn't criterion change for each grade (H,V, and E)?

 Use and criterion for intermediate temperature binder parameter (G*sin δ)

- Quick QC Testing on Original Binder
 - Terminal labs may not have RTFO oven
 - Need to validate presence of modifier and verify grade before shipping
 - MSCR testing on original binder?
 - Use of phase angle as surrogate?

- Grade names in AASHTO M332
 - Acceptance of letter designation for traffic
 - Need high temperature (environmental) as part of the grade name to know appropriate test temperature
 - PG designation is still appropriate
 - Still a Performance Graded asphalt binder
 - Even more so since Jnr is better correlated to rutting distress than G*/sin δ for both modified and unmodified binders
 - Education for Designers, truck drivers
 - Confusion of E and V (similar sounds) when ordering
 - Consider "X" instead of "E"?

- Inconsistent implementation by specifying agencies
 - We don't have a rutting problem so why do we need a better high temperature parameter?
 - Every M320 grade may not equate to a distinct M332 grade
 - the current polymer loading in a PG 70-22 and PG 76-22 may be high enough that both grade to a PG 64V-22

• MTE Rutting Study: Hamburg WI E10 Fine Mix

PG	PG	Test	Jnr-3.2 at		HWT Rut Depth at
GRADE	GRADE	Temp,	Test Temp,	Rec-3.2,	10,000 Passes,
(M320)	(MP19)	С	kPa ⁻¹	%	mm
70-22	n/a	75	5.74	0.5	13.2
64-22	64-22S	64	3.40	3.4	7.1
70-22	70-22S	70	2.92	1.5	5.1
70-22	64-22H	64	1.35	4.4	3.6
76-22	64-22E	64	0.24	55.8	1.7
82-22	64-22E	64	0.08	78.5	1.6

- Leadership/champion
 - Implementation belongs to everyone
 - PG system had leaders in all areas
 - Researchers
 - Dr. Tom Kennedy, A-001 Research Program Leader
 - Users
 - FHWA (implementation funding and technology transfer)
 - Lead States
 - Industry
 - Expert Task Group
 - Suppliers
 - Need leaders in user agencies, industry

- Suggestions for Path Forward
 - Need to repackage message
 - What should have been done as PG system was implemented was to change high temperature criterion as grade was bumped (due to traffic)
 - Need to change criterion rather than test temperature
 - Recognize that this is a major specification change instead of just focusing on MSCR as a new test
 - Truer to concept of a performance-based specification
 - Next step in evolution of specification

Thanks!